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The study of the deformation of diaphragms by impulsive loadings is an urgent 
problem in view of the more and more widely used techniques of high-speed form- 
ing of sheet materials (hydroexplosive, electromagnetic, and electrohydraulic 
stamping). A number of papers [i, 2] have appeared on the dynamics of the defor- 
mation of elastic diaphragms. Problems of axisymmetric plastic flow under pulsed 
loading have been studied by the method of characteristics [3, 4]. Important ap- 
plied aspects of explosive loading of diaphragms are described in [5]. We discuss 
the dependence of the properties of a transverse plastic wave (distortion wave) 
in a diaphragm on the state of stress. The motion is analyzed in an approximate 
formulation neglecting radial displacements along the Eu!erian coordinate and 
the change in thickness of the diaphragm. The diaphragm material satisfies the 
Treska -- Saint Venant yield condition. Results of experiments on hydroexplosively 
loaded diaphragms are presented. 

Theoretical Analysis 

The equations of motion of an elastic diaphragm acted upon by a hydroexplosive pulse 
can be written in the form 

O~w t Pr2 h ~  r 
r hq  r s i n  ~z = -:2- - -  ot". cos 

h~ r ~ h~q~ 02w 
/~r ' 1~  -= p - h ~ x ~ c ~  

- -  - -  dl~ 

(i) 

where r is the running distance of the point from the axis of symmetry, w is the vertical 
(axial) displacement, t is the time, a is the angle between the normal to the diaphragm at 
a given point and the axis of symmetry, o r and % are the principal stresses, meridional 
and circumferential, respectively, p is the pressure in the pulse, h ----- const is the thick- 
ness of the diaphragm, ~ is the density of the material, and Rr and R~ are the principal 
radii of curvature, meridional and circumferential: 

R r = 1 / c o s , ' ~ a - y ;  R ~  = r / c o s  ~ - ~ , .  

On the boundary of the diaphragm r = R and w = 0. The deflection w is in the direction of 
the negative semiaxis. After introducing the dimensionless variables x=~R, T=~-~ot/l,#~R 
(o o is the yield point), u=w/R, oi=%/~0, ~2=~/%, q=pR/2h% , and making the corresponding 
transformations, system (i) can be written in the vector form [6] 

g-d ~ or = b '  

o~ !o,,:, o~' o-Tj' 7 /  = o ~ '  o ~ ' - ~ j ;  
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where v = Ou,'Oz, and tan ~ = Ou/Ox . The system of equations (2) is complete, since ~ 
is related to o~ by the Treska--Saint Venant yield condition. The characteristics of the 
quasilinear system (2) are the eigenvalues of the matrix A detllA -- ~E[I , where E is the unit 
matrix. System (2) has the characteristics: 

~ E o : 0 '  ar ~+ V 1 ':'~ E = y  ' 
0~ = ~ e~ = =-- "-- o~ cos" o~' 0,--~ = ~-- -- ol cos" ~" 

U s i n g  t h e  m e t h o d  d e s c r i b e d  i n  [ 6 ]  t h e  n o r m a l i z e d  e i g e n v e c t o r s  ~ o f  s y s t e m  ( 2 )  c a n  b e  f o u n d  
and the differential form (/.dz) can be discussed. The eigenvectors have the form 
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Since the differential  forms (lo.dz), (l+.dz) and (_.dz) admit the integrating factors 

x o = 2er 1 cos a 1 / c o s  2 cz-I- ~ s i n  2 % z +  = •  = l , / eos  ~ cz - -  o ;  'cos cz, 

system (2) 

where 

can be written in terms of Riemann invariants s" 
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It is obvious that Eqs. 
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(3) are relations for the characteristics: 

(3a) 

(3b) 

(3c) 

. dso 
* = c o n s t . c 7  ~ = % ;  (4a) 
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Fig. i 

The characteristic $0 = 0 corresponds to the instantaneous propagation of disturbances 
along the whole segment of the x axis [0; i]. Forward and backward transverse waves are prop- 

agated with the velocity V-~cos ~ a along the characteristics ~+ and ~_ . The general 
form of the characteristics shows that the quasilinear system (2) is hyperbolic only for 
compressive stresses; i.e., o~0 on the wave front. The problem is complicated by the fact 
that the initial conditions are specified for the characteristic t = 0 (parabolic Goursat 
problem). The condition that system (2) be solvable [6] is that the relation 

o I s i n  a --'~ ~"- ~ cos a 2q tg a .  (5 )  
COS ~ Z - ~  - -  "~ ~ X C O S ~  x 

be satisfied on the straight line r = 0. Condition (5) is an expanded form of Eq. (4a) on 
the characteristic ~ = 0. If r = 0 on x for ~ = 0 we obtain from (5) the equation of axisym- 
metric equilibrium 

d~ I (~1 ~ ~2 
d x - r  x - - 0 .  (6 )  

Thus the parabolic nature of the system along one characteristic is due to neglecting the 
Eulerian radial displacement. That contribution to the deformation which a longitudinal 
plastic wave would introduce is now guaranteed by an instantaneous redistribution of the 
stress--strain state in response to each new disturbance introduced by a transverse wave. 
However, the assumed simplification made it possible to write Eq. (2) in Riemann invariants, 
permitting a more careful investigation of the nature of the transverse plastic wave. 

Plastic flow is impossible without reaching the yield point at the center or at the 
boundary of the diaphragm. Because of (6) the condition ~i = const leads to the equality 
~i = o~ = const over the whole diaphragm. This means that for ~ = 0 and ol = const C or 
F (Fig. i) are possible states. Regime F is meaningless, since it contradicts the fact of 

wave propagation of compressive stresses. Regime C presupposes a discontinuity in the stress 
o!at the center or on the clamped boundary at T= 0. The constraint ~i<0 is imposed on 
the continuous solution of Eq. (6) for system (2) in the neighborhood of x = 0 or x = i 
depending on whether a forward or a backward wave is considered. We consider a backward wave 
propagating from the end of the interval x = i. Since Eq. (6) continues to hold for T~0, 
regime FA is eliminated in the neighborhood of the moving front. At the center of the 
diaphragm oi= I. Regime AB is the only possibility which need be considered in the neigh- 
borhood of the front. The solution of (6) for regime AB with the yield condition % -- ~:=| 
having the form ol = in cx is not satisfied by the constraints introduced. Consequently, 
when the wave leaves the clamped edge (for T~0) the diaphragm is not plane in the neighbor- 
hood of the front and relations satisfying (5] are established between G~and ~. 

The type of wave must be determined. It can be a weak shock wave or a simple wave. A 
discontinuous solution is possible along a characteristic or along the line on which the 
incoming characteristics intersect (the phase plane Tx is considered). The possibility of 
a discontinuity in the solutions for v, ~, and ~ along a characteristic must be considered. 
For Eq. (3a), Eqs. (3b, c) are "residual" in the terminology of [7]. Since the residual 
equations involve derivatives of v and ~ across the characteristic T = const discontinuities 
in v and ~ are impossible, but o~can be discontinuous (v and ~ are placewise-continuous 
functions of ~ ). Similar cosiderations of the other two equations of system (3) lead to the 
conclusion that a discontinuity in v, ~, or olacross the characteristic is impossible. 
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Fig. 2 

The incoming characteristics intersect along the lines x = 0, x = i, and T = const~ 
Consequently, only contact discontinuities are possible on the lines x = 0 and x == I. Thus, 

the distortion wave is a simple wave which can degenerate into a weak shock wave at the points 
x = 0 and x = i. A more concrete consideration of the question of the nature of the simple 

wave is difficult, since problems of the existence of a solution of the Goursat problem for 

a system of three quasilinear equations and the very formulation of the problem have not been 
developed so far. It can only be pointed out that the presence of the pressure p in system 

(2) eliminates self-similarity in the general case (centered waves). In the special case 
when the invariant so is constant along the characteristics ~+ and $_ the solution can be a 
centered wave. 

The deformation process can be represented qualitatively as follows. The initial condi- 
tions are oi = o2 = i on 0~x~ i. At T = 0 the relations oI = ~2 = i on 0~x~l and 

~i = ~2 = --i on x = 1 corresponding to a contact discontinuity at x = i are established in- 

stantaneously. The diaphragm is plane at T = 0. For T > 0 a deformation wave begins to prop- 
agate from the clamped edge with oi = o2 = --i on its front. The distribution of ~ is con- 

tinuous between the edge and the center of the diaphragm. The stress o2 on the front is 
discontinuous along FA. The discontinuity in o2 along FA is admitted by system (2), since 

derivatives with respect to o2 do not enter into the defining equations. The departure of 
the wave from the edge and the contraction of the region of state C on the diaphragm are 

due to the bulging of the diaphragm, satisfying (4a). As the wave approaches the center 
of the diaphragm it again degenerates into a weak shock wave with respect to o~ (singularity 

at x = 0). In this case the stresses at the center instantaneously take on the values ~: = 
Oz = i. 

If Eqs. (2) were not parabolic the wave process could continue to the end of the action 
of the pressure pulse. However, Eq. (3a) "aligns" the stress pattern irreversibly (which, 

in general, is peculiar to a parabolic operator) in the direction of the tensile stresses. 
This leads to a lowering of the intensity of the wave process and then to a transition of the 
hyperbolic system (2) to elliptic. After this the whole diaphragm is stretched locally. 
Since the stress--strain state at the instant the wave action ceases becomes the initial 
condition for the elliptic system, the final strain distribution must carry "wave" traces 
and differ from the static distribution. It is necessary to take account of the fact that 
the values of the residual strains are reached only while system (2) is elliptic~ The wave 
mechanism of distortion is only one of the strain mechanisms described by the complete solu- 
tion of the mixed system (2) ~ 
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Experimental Results 

A series of experiments was performed on the hydro-explosive loading of circular dia- 
phragms of 08 kp steel~ M2 copper, and ADI aluminum in a laboratory arrangement using a test 
tank with rigid walls. The deformation process was recorded by taking streak photographs of 
a mesh ruled on the diaphragm. An accurate determination of the residual strains was made 
by the Moir~ method. The synchronization circuit and the technique of drawing the mesh are 
described in [8]. Tetraerythrite pentanitrate was used as an explosive. The values of the 
reduction ratio of the diaphragm (the ratio of the original to the strained diameter measured 
from the flange) were in the 1.00-1.20 range. 

Figure 2 shows motion-picture strips of the distortion process. Figure 2a illustrates 
the deformation of a steel sample without rupture; Figs. 2b and 2c are for copper and alu- 
minumwith rupture. Strip 2d (shadow photographs) records the deformation of a simply sup- 
ported diaphragm. All the diaphragm deformation processes last ~ 200 ~sec. 

Figure 3 shows the distribution of meridional and circumferential residual strains 
preceding rupture for the three materials investigated. 

It is clear from Fig. 2 that in a short initial period a meridian of the diaphragm is 
deformed as a whole. There are no moving local distortions of the surface which takes a 
shape close to that of a blunt cone. Then a wave of curvature of the diaphragm is propagated 
from the clamped edge with a clearly distinguishable ring-shaped concavity on its front. 
The convexity of the central part is maintained up to the instant of arrival of the ring 
concavity. Then the central concavity formed collapses. Figure 4 shows schematically the 
development of the distortion of the diaphragm. A careful study of the distortion of the 
ruled mesh showed that behind the front the strain waves are tensile on the front, and no 
distortion of the mesh is observed ahead of the front to within the accuracy of the measure- 
ments. It is therefore reasonable to assume that the ring concavity is the front of a plastic 
wave carrying the largest compressive stresses, and the concavity iZself is accounted for 
by the dynamic loss of stability of shape under the action of compressive stresses. Thus, 
the end of the strain wave corresponding to the arrival of the plastic wave at the center 
of the diaphragm stops the state with the central concavity. The subsequent deformation is 
localized. 

The distortion mechanism described above is confirmed by the dip of the residual tensile 
meridional strains in the middle of the segment of the x axis [0;i] (Fig. 3). In statics 
their distribution does not have such a singularity. In addition, it follows from Fig. 2d 
that the conditions on the edge do not have a substantial effect on the propagation of the 
distortion wave. The residual strains of a simply supported diaphragm are practically'zero. 
Consequently, the main deformation process occurs after the disappearance of the plastic 
wave. But its presence affects the character of the distribution of meridional strains in 
the next deformation. 

In conclusion, we note that the theoretical analysis developed in the first section 
corresponds to the actual behavior of a diaphragm under dynamic loading. The front of 
the plastic wave carries compressive stresses. Its clear manifestation is due to not taking 
account ideally of plasticity in Zhe formulation of the problem of the dynamic loss of stabil- 
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ity possible on the front for 02 < 0. Equations (2) admit a discontinuity in ~2 so that 
it is possible to account for the loss of stability indirectly. Neglecting the radial 
displacement and inertia [making system (2) parabolic] introduces an indeterminacy into 
the stress distribution in the neighborhood of the front of the transverse wave. When 
the radial inertia is taken into account the characteristic T = const goes over into a 
family of characteristics of the longitudinal wave. The interaction of longitudinal and 
transverse waves leads to a rapid transition from compressive to tensile stresses. This 
interaction is particularly noticeable for materials that show pronounced hardening (copper). 
In this case there is a sharp contraction of the beam of centered waves and a rapid decrease 
of compressive stresses behind the front. Figure 2b confirms this conclusion: the tensile 
stresses behind the front and close to it lead to a rupture of the diaphragm along a parallel. 

From the position taken in the present paper it is possible to account for the result 
in [9] that the dynamic hardening curve calculated from the values of the velocity of a 
transverse wave and the residual strains is the same as the static curve. Here it is neces- 
sary to take account of the fact that the wave front is related to compressive stresses and 
in the limiting case (excluding instability) leads to compressive strains. The residual 
tensile strains are determined by the nonwave period of dynamic deformation. Studies in 
[I0] indicate an appreciable difference between the dynamic and static hardening curves for 
strain rates ~ 500 sec -~. 
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